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Dynamical exponent of rough surface with quenched noise
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Dynamical behavior of the directed percolation model is investigated in detail. We find that the width of the
interface has two scaling regions. By introducing two kinds of growth events and a proper definition of time,
the first scaling region is shown to describe the transient process and the second one the asymptotic one.
Moreover, we find an interesting phenomenon thatjad the exponential increasing of the width of the
interface W(L,t) is subject to a “periodic” oscillation of timet. This periodic behavior is weakened by
increasingg, and it eventually disappears for sufficiently lamge S1063-651X%97)15602-1

PACS numbs(s): 05.40:+j

For decades, due to its importance in many fields, such aBarisi-ZhangKPZ) equation7], have been remarkably suc-
the motion of liquids in porous media, fronts of fire, and cessful in describing roughening in the case of annealed dis-
growth of bacterial colonies, the investigation of rough sur-order. Karderet al. used a dynamical renormalization group
faces and interfaces has attracted much attention, and comethod to analyze the KPZ equation, and found #nl1di-
siderable progress has been made in understanding the prapensions,e=3% and B=%. Some models, such as the Eden
erties in these process¢d-5]. Despite the diversity of model, the ballistic model, and the restricted solid-on-solid
physical phenomena, rough surfaces and interfaces can frodel, etc., give the results near the values of the KPZ equa-
quently be described quite well in terms of the concepts ofion [6,8,9. But some experiments, such as the motion of
fractal geometry. Most rough surfaces and interfaces appegguids in a porous medium, and the growth of bacterial colo-
to exhibit self-affine scaling over a significant range ofnies[3,5], where the disorder is quenched, give the expo-
length scales. nents anomalously larger than the ones of the KPZ equation.

In general, ad-dimensional self-affine fractal, described They givea ranging from 0.7 to 0.9. To understand this
by a single-valued functiorh(x,t), evolves in a(d+1)-  phenomenon, the directed percolatid@P) model was pro-
dimensional medium. The self-affine interface can be charposed[10,11]. In the DP model, the roughness exponent

acterized by the rms surface widdi(L,t), defined as a=0.63 is anomalously large and close to the value of the
_ s e N1/2 experiments. Up to now, the DP model has been considered
WL, O ={{h(X.) = (h(X,D) 1), @) as a universal class different from the KPZ class.

The DP model used in this paper was proposed by Tang
r%rjd Leschhorf11]. On a square lattice of eddge (with
periodic boundary condition we assign a random pinning
force f(F) uniformly distributed in the intervdl0,1] to every
cell. For a given applied pressugg1=p=0), we can divide

t the cells into two groups, free cells with(f)<p and
W(L,t)=L“f(F>, (2 blocked cells withf()>p. Obviously, the density of the
blocked cells on the lattice ig=1—p. Under the solid-on-
where f(x) is a scaling functionf(x)x=const forx>1 and  S0lid (SOS condition, the interface is determined by a set of

whereh(X,t) is the height of the interface at timieand the
angular brackets denote average over space and different
alizations of disorder. It is believed th&¥(L,t) obeys the
finite size dynamical scaling layé]

f(x)ocx? for x<1, andz is the dynamical factor wita=a/g. ~ INt€ger column heights;, i=1,...L. At t=0, we assume
Combining them, we find that the initial interface is flat, that i$;=0,i=1,...L. The
growth event is defined as follows. We randomly select a
LY (t>L? column, sayi, and compare its height with those of the two
W(Lit)“[tﬁ (t<?) () adjoint columnsi—1 andi+1, if h;=min {h;_;,h;, .} +2;

the site that is the smaller of the two adjoint columns is
where « is the roughness exponent adthe dynamical incremented by one uniin the case of a tie, we choose one
exponent, which characterize the static and dynamic propeof the two with equal probabilily In the opposite case,
ties of the rough surface, respectively. h;,<min {h;_;,h;; 4} +2, columni advances by one unit if
Two main classes of disorder, which affect the motion ofthe cell to be occupied is a free cell. Otherwise no growth
the interface and lead to its roughening, have been discussesent takes place. In this model, the time unit is defined as
in the literature. The first, called “annealed” noise, dependsone growth attempt. In numerical simulation, we measure
only on time. The second, “guenched” disorder, is frozen intime in units ofL growth attempts. It is known that there
the medium. Continuous equations, such as the Kardaexists a critical density). in the limit L—«, above which
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6 Due to the self-affine fractal nature of the interface, the
DP model has two kinds of correlation lengths. One is par-
allel to the flat reference surfacg,and the other is vertical
to the reference surfacég, . &, is proportional to the width of
the interfaceW(L,t). As q<(., some sections of the inter-
face are pinned and the growth occurs only in columns that
contain free cells on the interface, and wherq., the
blocked cells can form a connected cluster spanning the
whole system and the interface is pinned. Usually the aver-
ol / 0 age horizontal size of the pinned section is considereg].as
- However, there may be another situation whéres the av-
‘ erage horizontal length of sections of the interface formed by
“oTT2 4 6w 02 4 & 8 connected free cells; this situation happens for sufficiently
In(t) In(t) smallq. In fact, the definition of the correlation function is

2In[W(t)]
2In(W[t)]

4 ‘ G(r,r",)=(h(F,t) =(h)I[h(F,t) = (h)]). (4)

/ As a conclusion, correlation length should be mainly deter-
/ mined by the finite cluster. Here, the finite cluster means that

/ it cannot span the whole system. This point can be mani-
fested by the DP model. We know that the blocked cells
/ form a connected cluster that spans the whole system for

2In[W(b)]
2In[W(b)]

g>q. while free cells form a connected cluster spanning the
9 / whole system only fog<1- (.. Consequently, is mainly
/ determined by the pinned section fp< 1 — g, while by the
moving section formed by free cells for>q.. It is worth
mentioning that the infinite cluster does not exist either
0 2 4 B ’ 2 4 6 among blocked cells or among free cells ford.<q<g..
In(t) In(t) According to the results of Fig. 1, the scaling form Egs.
(3) must be modified to

FIG. 1. Scaling of the width of rough surface vs time with s 1z
L=8192. The curve crosses over from a power law with an expo- thr (t<§")
nent B; to another power law with an exponefis: (a) q=0.49, W(L,t)~ tP2 (§ﬂ/2<t< LY, (5)
B5,=0.649, B,=0.304; (b) q=0.3, B,=0.417, B,=0.288; (c) L* (t>L%
q=0.51, 3,=0.657,3,=0.288;(d) q=0.6, 3;=0.486.

From Eq.(5), we know thatg; is the exponent that charac-
growth eventually stops; i.e., the whole interface is pinnedterizes the process in which growth evolves from a site into
This critical valueq,, is the threshold for the directed perco- correlation length.§,, and & decreases wheq decreases
lation, which is about 0.539 in this model. from g.. As a result, the scaling range characterized by ex-

In the neighborhood ofj., the dynamic exponeng ob-  ponentB; shrinks wheng decreases from.. The exponent
tained by Tang and Leschhoft0] is 0.63 both above and B, characterizes the process in which the interface develops
belowq,, while 8 obtained by Makse and Amaral is 0.68 in in the size from¢, to the whole system.
the pinning phaseq>>q.) and is 0.75 in the moving phase  Furthermore, we numerically simulate the relations be-
(g<q,) [12]. However, no systematical investigation for the tween IfW(L,t)] and In¢) for variousq. From the data, we
dependence g8 on g has been carried out. In this paper, we measure3; and 3, for eachq, and plotg, and3, versusg in
will discuss this dependence in detail. We find that changind-ig. 2. The range of examined is from 0.2 to 0.72, which
g can dramatically changg; the result is considerably dif- runs from a parameter far below the pinning-depinning point,
ferent from the general picture known so far. to that far above the point. It is rather unexpected {Bat

First, we simulate the model numerically, and the resultdepends org so strongly.3; increases whem increases
are averaged for many realizations. In Figa)lwe plot the from 0.2 to 0.46. A smalB, flat plateau is found in the range
relation between IN)V(L,t)] and In(t) atq=0.49. Itis found from 0.46 to 0.54. After the pinning-depinning poipt, 3;
that the widthw(L,t) has two power law regions before it decreases when increases. Therefore, thg,-q relation
saturates to a constant. Now, we denote the exponents in tlsBows an interesting curve. This picture tells us {Bats a
first and the second regions 84 and B,, respectively. At  function of density of blocked cells. A heuristic explanation
this g, we havepB;=0.649, andB,~=0.304. In the other parts can be made for this curve. The changeBgfmanifests the
of Figs. 1, we plot the results for differewt, i.e., q=0.3, result of the competition between the free cells and the
0.51, 0.6. From these figures, we find the scaling region chablocked cells. The value g8, is mainly determined by the
acterized byB; is enlarged by increasing, while the region connected section formed by the blocked cells or free cells
characterized by, shrinks agy increases. The second scal- that cannot span the whole system. With the increase of the
ing region disappears whegr>(q,. due to the fact that the probability of large connected sections, the interface be-
interface is pinned. comes rougher; as a result, the expongpincreases. In the
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FIG. 2. Dynamical exponentg8; and B3, as functions of. 81 Ng

first region[q (0.2, 0.46], free cells can form the connected
cluster that spans the whole system, and it is the blocked
cells that influence the properties of the system. With the ‘
increase ofg, larger connected sections formed by blocked / N "5,
cells may appear frequently, the® increases with the in- & 1
creasing of the density of the blocked cells. In the third re- \
gion[qe(0.54, 0.72], blocked cells can form the connected 4 0 , i
cluster that spans the whole system, it is free cells that are In(t)
relevant to the scaling behavior, and wherincreasesg;
decreases with decreasing of the density of the free cells.
Finally, in the second region, neither free cells nor blocked FIG. 3. N, andNg vs time withL=8192.N, andNg are the
cells can form the cluster spanning the whole system, thaumbers of the growth occurring at the site chosen or its adjoint site
influences of these two kinds of cells on the system dynamin certain time interval, respectivelya) q=0.49; (b) q=0.3; (c)
ics are comparable, and the competition between these twa=0.51;(d) q=0.6.
kinds of cells makes the flat plateau 8f appear. Similarly,
we measure the value @8, (it exists only in the moving kinds of growth events. According to the definition of the
phase and plot the results also in Fig. 2. It is surprising thatmodel, the site increasing a unit,, =h;,+1, may be a site
the behavior of3, is considerably different frons;. 8, fluc-  we have chosen or may be a site adjoint to the site chosen;
tuates around 0.3 ag varies, namely,3, is practically a then we can define the event in which the growth occurs at
constan{3,=0.3) independent ofj in the permitted range of the site we have chosen randomly as a tppevent and the
error. We consider the fact that the interface consists of conevent in which the growth occurs at an adjoint site as a type
nected sections of widtk-1, building a driving interface on B event. In the numerical simulation, we count the numbers
large scale. As these sections contribute to total width, wef types A and B growth events in a time interval df
can expect that the numerical estimate 8&fis underesti- growth attemptsN,(t) denotes the number of everfisin L
mated and it is possible that the actyglis a bit larger and growth attempts antliz(t) denotes the number &:. In Fig.
it may be3 on large scales, which is the result of the KPZ 3, we plot N(t) and Ng(t) versust for different g (the
equation[7]. values ofg are the same as the corresponding values in Fig.
Our numerical results are qualitatively consistent with thel). From Fig. 3, we findN(t) is dominant for smaft. When
B value experimentally determined by Horvath and Stanleyt increasesN,(t) decreases whildlg(t) increases for small
[13]. In the investigation of the growing interface during t. In the large time region botiN,(t) and Ng(t) tend to
imbibition of viscous liquids in filter paper, Horvath and certain constants, which are finite for the moving phase and
Stanley found1) 8=0.56+0.03 with 8 independent of driv- zero for the pinning phase. The entire temporal behavior of
ing and(2) no crossover frong, to B, in the scaling regime. the system can be understood heuristically. For the model we
In comparison with our results, their experiment conditionstudy, the initial surface is flat. Therefore at the beginning,
corresponds to the neighborhood of the critical vatiye  the differences of height between most adjoint sites satisfy
where our numerical value @8, is constant and the scaling the requiremenfh=<2; N,(t) is much larger thamg(t) for
region of B, disappears. We may expect the appearance of amallt. When growth continues, more and more height dif-
crossover of the scaling region and the driving dependencterences between adjoint sites exceed the requirement, the
of B for large driving(i.e., for smallq). probability that growths occur at the adjoint site becomes
In order to investigate the mechanism underlying dynamidarger, as a resultNg(t) increases andN,(t) decreases.
cal behavior of the DP model further, let us discuss twoHowever, in the case af<q, these increasing and decreas-

ININ()]

ININ(t)]
S
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FIG. 4. Scaling of the width of rough surface vs the moqified
time with =0.539,L=8192. The data are well fitted by/~t?
with g'=1.1.

FIG. 5. Width vs time withg=0, L=8192. The periodic behav-
ior of width added to the exponentially increasing tendency is ob-
served; the period is 30

ing tendencies saturate to an equilibrium balance in the large
time region, the system reaches a steady state, and bof@re it reaches the critical state. In our case we also find that
Na(t) andNg(t) will be constants with small fluctuation.  B; describes the dynamical behavior of the system during the
By comparing Figs. 1 and 3, we find that the variations ofprocess in which a “perturbation” is propagated to the size
NA(t) andNg(t) have close correspondence with the scalingof correlation length. Under the modified definition of time
exponentsB; and B,. In the region characterized bg;, the closeness of the exponegit of the DP model with that
Na(t) andNg(t) change rapidly. While in the region char- of the SOC model3, manifests the intrinsic link between
acterized byB,, NA(t) andNg(t) are practically constants if these two important models, which is worth investigating
we average them for large number of samples. This phenonfurther. This fact shows thas, is related tog,, and it is a
enon is independent af, and it is the reason thad, is a  transient dynamical exponent.
constant, namelyj3, is determined by the dynamic balance  Another interesting point is tha, (8,~0.66 atq=0.539
induced by the competition between evedtsand B. By  under the original definition of time is close t@;
investigating event#& and B, we can find tha, is an ex-  (B.~0.69+0.02 [14]) in the SOC model. In the SOC
ponent characterizing a transient process gné an expo- model, 8. is measured in the ensemble average of the evo-
nent characterizing the asymptofiasymptotic in the sense lution for many segments. In other words, the growth of a
ﬁ’z<t< L% behavior of the system. given local segment does not proceed in a continuous way,
Comparing the DP moddl10,11] with the SOC model and growth jumps among different segments. For any given
proposed by Sneppefi4], we observe that there are two segment, there are many waiting steps between two succes-
kinds of differences between the two models. One wellsive growths, and during the waiting times, growths occur at
known difference is that the external force applied to theother segments. Considering the growth process in the DP
system in the DP model is constant, while the force is amodel under the original definition of time, we find the DP
function of time in the SOC moddiin the latter case the model in the neighborhood af, is very similar to a local
system selects a smallest force for growihhe other is that segment in the SOC model, that is, we can relate the DP
there is one growth at every time unit in the SOC model,system ag~q. to a local region embedded in a larger SOC
while there is only a growth attempt for every time unit, system, while we relate the waiting times in the DP system
growth may occur or not occur at a given time unit. Now, weto the growths of SOC system occurring in the regions away
will focus on the latter difference, and try to link the DP from the given local region. From all the above pictures, we
model with the SOC model by modifying the time definition can heuristically understand the reason {Baand 8’ in the
of the DP model. For this purpose, we define the time unit oDP model are about equal to the valueBaf; and G, of the
the DP model as a true growth not a growth attempt. ThereSOC model, respectively.
fore, under this definition, there may be many growth at- To complete the discussion on hayinfluences the be-
tempts between two successive time units, i.e., between twioavior of the system, we consider the extreme case).
successive actual growth events. The SOC system will reachhis is contrary to the opposite extreme cage;1l, where
its critical state after a transient process, so in order to comthe behavior of the system is trivial because the interface
pare with the SOC model, we should investigate the DRcannot advance. As mentioned in Rgf0], there is no scal-
model in the neighborhood of the transition point. Then weing behavior afj=0. This conclusion has been confirmed by
focus our attention onq=0.539. In Fig. 4, we plot our simulations. But to our surprise, we find that the system
InN[W(L,t")] versus Irit"), wheret' is the modified timdi.e.,  has certain periodic properties. The result is presented in Fig.
t’ is counted by true growth events, not by growth attempts 5. From Fig. 5, we can find that the width of the interface
From Fig. 4, we find the dynamical exponent W(L,t) varies periodically while it increaséander the con-
B'[W(L,t")~t"#] is about 1.1 for smalt’ and this value is dition of Fig. 5, the whole increasing behavior is exponen-
very close to the exponei, in the transient process of the tial), and the period is 30 According to our simulations the
SOC model14-16. The transient exponen, of the SOC  amplitude of the periodic oscillation is a constant except the
system describes the dynamical behavior of the system bénitial stage. In Fig. 5, there are small fluctuations in various
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periods, which is due to the fact that the site of growth isbeen well understood, i.e., what factors influence period?
chosen randomly. If we average the curve for a large numbewhy do eventsA andB control the width of the interface in

of samples, we can obtain a smooth curve with very gooduch a periodic way? The mechanism of periodic behavior is
periodicity (excluding the exponentially increasing ten- still under study.

dency. To further investigate this phenomenon, we also |n summary, we have investigated the dynamical behavior
simulate the dynamical system for smell From the data, of the DP model in detail. We find the width of the interface
we find that(1) the period is independent of and (2) the  has the dynamical scaling behavior characterized by the form
amplitude depends o, and amplitude decreases when  of gq, (5). Furthermore, by introducing ever#sandB and
increases. Furthermore, we find the period is also indepeny mqdified definition of time, we can interprg as an ex-

dent of the restricted difference of height between adjoint,,nent gescribing the transient process and the expghent
sites. In fact, this P?’_”Od'c behavior can be regarded as th s an asymptotic exponent. The link between dynamical scal-
result of the competition between eveAtsndB. Generally ing behaviors of the DP model and the SOC model is briefly

spegkmg, eve_ntA roughen the mjerface while everBs_fIgt— discussed. Finally, we find an interesting phenomenon that at
ten it. IncreasingA events may increase the probability for —0 and smallg, the width of the interfaceV(L 1) is a

eventsB to appear, and vice versa. This crossing interactionﬁ1 T I . . )
mechanism make& and B events dominant in turn. and periodic” oscillation of time added to an exponentially in-

leads to the appearance of the periodic behavior. Of cours&€'€@sing behavior, and we heuristically explain the mecha-
this is an ambiguous statement. Some problems have n8Sm underlying this periodicity.
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