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Dynamical exponent of rough surface with quenched noise
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Dynamical behavior of the directed percolation model is investigated in detail. We find that the width of the
interface has two scaling regions. By introducing two kinds of growth events and a proper definition of time,
the first scaling region is shown to describe the transient process and the second one the asymptotic one.
Moreover, we find an interesting phenomenon that atq50 the exponential increasing of the width of the
interfaceW(L,t) is subject to a ‘‘periodic’’ oscillation of timet. This periodic behavior is weakened by
increasingq, and it eventually disappears for sufficiently largeq. @S1063-651X~97!15602-1#

PACS number~s!: 05.40.1j
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For decades, due to its importance in many fields, suc
the motion of liquids in porous media, fronts of fire, an
growth of bacterial colonies, the investigation of rough s
faces and interfaces has attracted much attention, and
siderable progress has been made in understanding the
erties in these processes@1–5#. Despite the diversity of
physical phenomena, rough surfaces and interfaces can
quently be described quite well in terms of the concepts
fractal geometry. Most rough surfaces and interfaces ap
to exhibit self-affine scaling over a significant range
length scales.

In general, ad-dimensional self-affine fractal, describe
by a single-valued functionh(x,t), evolves in a~d11!-
dimensional medium. The self-affine interface can be ch
acterized by the rms surface widthW(L,t), defined as

W~L,t !5$Š@h~xW ,t !2^h~xW ,t !&#2‹1/2%, ~1!

whereh(xW ,t) is the height of the interface at timet, and the
angular brackets denote average over space and differen
alizations of disorder. It is believed thatW(L,t) obeys the
finite size dynamical scaling law@6#

W~L,t !5La f S t

LzD , ~2!

where f (x) is a scaling function,f (x)}const forx@1 and
f (x)}xb for x!1, andz is the dynamical factor withz5a/b.
Combining them, we find

W~L,t !; HLa ~ t@Lz!
tb ~ t!z!

, ~3!

where a is the roughness exponent andb the dynamical
exponent, which characterize the static and dynamic pro
ties of the rough surface, respectively.

Two main classes of disorder, which affect the motion
the interface and lead to its roughening, have been discu
in the literature. The first, called ‘‘annealed’’ noise, depen
only on time. The second, ‘‘quenched’’ disorder, is frozen
the medium. Continuous equations, such as the Kar
551063-651X/97/55~2!/1525~5!/$10.00
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Parisi-Zhang~KPZ! equation@7#, have been remarkably suc
cessful in describing roughening in the case of annealed
order. Karderet al. used a dynamical renormalization grou
method to analyze the KPZ equation, and found in 111 di-
mensions,a51

2 and b51
3. Some models, such as the Ed

model, the ballistic model, and the restricted solid-on-so
model, etc., give the results near the values of the KPZ eq
tion @6,8,9#. But some experiments, such as the motion
liquids in a porous medium, and the growth of bacterial co
nies @3,5#, where the disorder is quenched, give the exp
nents anomalously larger than the ones of the KPZ equat
They give a ranging from 0.7 to 0.9. To understand th
phenomenon, the directed percolation~DP! model was pro-
posed @10,11#. In the DP model, the roughness expone
a.0.63 is anomalously large and close to the value of
experiments. Up to now, the DP model has been conside
as a universal class different from the KPZ class.

The DP model used in this paper was proposed by T
and Leschhorn@11#. On a square lattice of edgeL ~with
periodic boundary condition!, we assign a random pinnin
force f (rW) uniformly distributed in the interval@0,1# to every
cell. For a given applied pressureq ~1>p>0!, we can divide
the cells into two groups, free cells withf (rW)<p and
blocked cells withf (rW).p. Obviously, the density of the
blocked cells on the lattice isq512p. Under the solid-on-
solid ~SOS! condition, the interface is determined by a set
integer column heightshi , i51,...,L. At t50, we assume
that the initial interface is flat, that is,hi50, i51,...,L. The
growth event is defined as follows. We randomly selec
column, sayi , and compare its height with those of the tw
adjoint columnsi21 and i11, if hi>min $hi21,hi11%12;
the site that is the smaller of the two adjoint columns
incremented by one unit~in the case of a tie, we choose on
of the two with equal probability!. In the opposite case
h1 ,,min $hi21,hi11%12, columni advances by one unit i
the cell to be occupied is a free cell. Otherwise no grow
event takes place. In this model, the time unit is defined
one growth attempt. In numerical simulation, we meas
time in units ofL growth attempts. It is known that ther
exists a critical densityqc in the limit L→`, above which
1525 © 1997 The American Physical Society
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1526 55JUNZHONG YANG AND GANG HU
growth eventually stops; i.e., the whole interface is pinn
This critical valueqc is the threshold for the directed perco
lation, which is about 0.539 in this model.

In the neighborhood ofqc , the dynamic exponentb ob-
tained by Tang and Leschhorn@10# is 0.63 both above and
belowqc , while b obtained by Makse and Amaral is 0.68 i
the pinning phase (q.qc) and is 0.75 in the moving phas
(q,qc) @12#. However, no systematical investigation for th
dependence ofb on q has been carried out. In this paper, w
will discuss this dependence in detail. We find that chang
q can dramatically changeb; the result is considerably dif-
ferent from the general picture known so far.

First, we simulate the model numerically, and the resu
are averaged for many realizations. In Fig. 1~a!, we plot the
relation between ln[W(L,t)] and ln(t) atq50.49. It is found
that the widthW(L,t) has two power law regions before
saturates to a constant. Now, we denote the exponents in
first and the second regions byb1 andb2, respectively. At
this q, we haveb1.0.649, andb2.0.304. In the other parts
of Figs. 1, we plot the results for differentq, i.e., q50.3,
0.51, 0.6. From these figures, we find the scaling region ch
acterized byb1 is enlarged by increasingq, while the region
characterized byb2 shrinks asq increases. The second sca
ing region disappears whenq.qc due to the fact that the
interface is pinned.

FIG. 1. Scaling of the width of rough surface vs time wi
L58192. The curve crosses over from a power law with an ex
nent b1 to another power law with an exponentb2: ~a! q50.49,
b150.649, b250.304; ~b! q50.3, b150.417, b250.288; ~c!
q50.51,b150.657,b250.288;~d! q50.6,b150.486.
.
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Due to the self-affine fractal nature of the interface, t
DP model has two kinds of correlation lengths. One is p
allel to the flat reference surface,ji and the other is vertica
to the reference surface,j' . j' is proportional to the width of
the interfaceW(L,t). As q,qc , some sections of the inter
face are pinned and the growth occurs only in columns t
contain free cells on the interface, and whenq.qc , the
blocked cells can form a connected cluster spanning
whole system and the interface is pinned. Usually the av
age horizontal size of the pinned section is considered asji .
However, there may be another situation whereji is the av-
erage horizontal length of sections of the interface formed
connected free cells; this situation happens for sufficien
smallq. In fact, the definition of the correlation function is

G~rW,rW8,t !5Š@h~rW,t !2^h&#@h~rW,t !2^h&#‹. ~4!

As a conclusion, correlation length should be mainly det
mined by the finite cluster. Here, the finite cluster means t
it cannot span the whole system. This point can be ma
fested by the DP model. We know that the blocked ce
form a connected cluster that spans the whole system
q.qc while free cells form a connected cluster spanning
whole system only forq,12qc . Consequently,ji is mainly
determined by the pinned section forq,12qc while by the
moving section formed by free cells forq.qc . It is worth
mentioning that the infinite cluster does not exist eith
among blocked cells or among free cells for 12qc,q,qc .

According to the results of Fig. 1, the scaling form Eq
~3! must be modified to

W~L,t !;H tb1tb2

La

~ t!j i
1/z!

~j i
1/z!t!L1/z!

~ t@L1/z!
. ~5!

From Eq.~5!, we know thatb1 is the exponent that charac
terizes the process in which growth evolves from a site i
correlation length,ji , and ji decreases whenq decreases
from qc . As a result, the scaling range characterized by
ponentb1 shrinks whenq decreases fromqc . The exponent
b2 characterizes the process in which the interface deve
in the size fromji to the whole system.

Furthermore, we numerically simulate the relations b
tween ln@W(L,t)# and ln(t) for variousq. From the data, we
measureb1 andb2 for eachq, and plotb1 andb2 versusq in
Fig. 2. The range ofq examined is from 0.2 to 0.72, which
runs from a parameter far below the pinning-depinning po
to that far above the point. It is rather unexpected thatb1
depends onq so strongly.b1 increases whenq increases
from 0.2 to 0.46. A smallb1 flat plateau is found in the rang
from 0.46 to 0.54. After the pinning-depinning pointqc , b1
decreases whenq increases. Therefore, theb1-q relation
shows an interesting curve. This picture tells us thatb1 is a
function of density of blocked cells. A heuristic explanatio
can be made for this curve. The change ofb1 manifests the
result of the competition between the free cells and
blocked cells. The value ofb1 is mainly determined by the
connected section formed by the blocked cells or free c
that cannot span the whole system. With the increase of
probability of large connected sections, the interface
comes rougher; as a result, the exponentb1 increases. In the

-
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55 1527DYNAMICAL EXPONENT OF ROUGH SURFACE WITH . . .
first region@qP~0.2, 0.46!#, free cells can form the connected
cluster that spans the whole system, and it is the block
cells that influence the properties of the system. With t
increase ofq, larger connected sections formed by blocke
cells may appear frequently, thenb1 increases with the in-
creasing of the density of the blocked cells. In the third r
gion @qP~0.54, 0.72!#, blocked cells can form the connecte
cluster that spans the whole system, it is free cells that
relevant to the scaling behavior, and whenq increases,b1
decreases with decreasing of the density of the free ce
Finally, in the second region, neither free cells nor blocke
cells can form the cluster spanning the whole system, t
influences of these two kinds of cells on the system dyna
ics are comparable, and the competition between these
kinds of cells makes the flat plateau ofb1 appear. Similarly,
we measure the value ofb2 ~it exists only in the moving
phase! and plot the results also in Fig. 2. It is surprising tha
the behavior ofb2 is considerably different fromb1. b2 fluc-
tuates around 0.3 asq varies, namely,b2 is practically a
constant~b250.3! independent ofq in the permitted range of
error. We consider the fact that the interface consists of co
nected sections of width@1, building a driving interface on
large scale. As these sections contribute to total width,
can expect that the numerical estimate ofb2 is underesti-
mated and it is possible that the actualb2 is a bit larger and
it may be 1

3 on large scales, which is the result of the KP
equation@7#.

Our numerical results are qualitatively consistent with th
b value experimentally determined by Horvath and Stanl
@13#. In the investigation of the growing interface during
imbibition of viscous liquids in filter paper, Horvath and
Stanley found~1! b50.5660.03 withb independent of driv-
ing and~2! no crossover fromb1 to b2 in the scaling regime.
In comparison with our results, their experiment conditio
corresponds to the neighborhood of the critical valueqc ,
where our numerical value ofb1 is constant and the scaling
region ofb2 disappears. We may expect the appearance o
crossover of the scaling region and the driving dependen
of b for large driving~i.e., for smallq!.

In order to investigate the mechanism underlying dynam
cal behavior of the DP model further, let us discuss tw

FIG. 2. Dynamical exponentsb1 andb2 as functions ofq.
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kinds of growth events. According to the definition of th
model, the site increasing a unit,hi 85hi 811, may be a site
we have chosen or may be a site adjoint to the site chos
then we can define the event in which the growth occurs
the site we have chosen randomly as a typeA event and the
event in which the growth occurs at an adjoint site as a ty
B event. In the numerical simulation, we count the numbe
of types A and B growth events in a time interval ofL
growth attempts.NA(t) denotes the number of eventsA in L
growth attempts andNB(t) denotes the number ofB. In Fig.
3, we plot NA(t) and NB(t) versust for different q ~the
values ofq are the same as the corresponding values in F
1!. From Fig. 3, we findNA(t) is dominant for smallt. When
t increases,NA(t) decreases whileNB(t) increases for small
t. In the large time region bothNA(t) and NB(t) tend to
certain constants, which are finite for the moving phase a
zero for the pinning phase. The entire temporal behavior
the system can be understood heuristically. For the model
study, the initial surface is flat. Therefore at the beginnin
the differences of height between most adjoint sites sati
the requirementDh<2; NA(t) is much larger thanNB(t) for
small t. When growth continues, more and more height d
ferences between adjoint sites exceed the requirement,
probability that growths occur at the adjoint site becom
larger, as a result,NB(t) increases andNA(t) decreases.
However, in the case ofq,qc these increasing and decreas

FIG. 3. NA andNB vs time withL58192.NA andNB are the
numbers of the growth occurring at the site chosen or its adjoint s
in certain time interval, respectively.~a! q50.49; ~b! q50.3; ~c!
q50.51; ~d! q50.6.
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1528 55JUNZHONG YANG AND GANG HU
ing tendencies saturate to an equilibrium balance in the la
time region, the system reaches a steady state, and
NA(t) andNB(t) will be constants with small fluctuation.

By comparing Figs. 1 and 3, we find that the variations
NA(t) andNB(t) have close correspondence with the scal
exponentsb1 and b2. In the region characterized byb1,
NA(t) andNB(t) change rapidly. While in the region cha
acterized byb2, NA(t) andNB(t) are practically constants i
we average them for large number of samples. This phen
enon is independent ofq, and it is the reason thatb2 is a
constant, namely,b2 is determined by the dynamic balanc
induced by the competition between eventsA and B. By
investigating eventsA andB, we can find thatb1 is an ex-
ponent characterizing a transient process andb2 is an expo-
nent characterizing the asymptotic~asymptotic in the sens
j i
1/z!t!L1/z! behavior of the system.
Comparing the DP model@10,11# with the SOC model

proposed by Sneppen@14#, we observe that there are tw
kinds of differences between the two models. One w
known difference is that the external force applied to
system in the DP model is constant, while the force is
function of time in the SOC model~in the latter case the
system selects a smallest force for growth!. The other is that
there is one growth at every time unit in the SOC mod
while there is only a growth attempt for every time un
growth may occur or not occur at a given time unit. Now, w
will focus on the latter difference, and try to link the D
model with the SOC model by modifying the time definitio
of the DP model. For this purpose, we define the time uni
the DP model as a true growth not a growth attempt. The
fore, under this definition, there may be many growth
tempts between two successive time units, i.e., between
successive actual growth events. The SOC system will re
its critical state after a transient process, so in order to c
pare with the SOC model, we should investigate the
model in the neighborhood of the transition point. Then
focus our attention onq50.539. In Fig. 4, we plot
ln[W(L,t8)] versus ln~t8!, wheret8 is the modified time~i.e.,
t8 is counted by true growth events, not by growth attemp!.
From Fig. 4, we find the dynamical expone
b8[W(L,t8);t8b8] is about 1.1 for smallt8 and this value is
very close to the exponentbtr in the transient process of th
SOC model@14–16#. The transient exponentbtr of the SOC
system describes the dynamical behavior of the system

FIG. 4. Scaling of the width of rough surface vs the modifi
time with q50.539,L58192. The data are well fitted byW;tb8

with b851.1.
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fore it reaches the critical state. In our case we also find
b1 describes the dynamical behavior of the system during
process in which a ‘‘perturbation’’ is propagated to the s
of correlation length. Under the modified definition of tim
the closeness of the exponentb8 of the DP model with that
of the SOC modelbtr manifests the intrinsic link betwee
these two important models, which is worth investigati
further. This fact shows thatb1 is related tobtr and it is a
transient dynamical exponent.

Another interesting point is thatb1 ~b1;0.66 atq50.539!
under the original definition of time is close tobcrit
~bcrit;0.6960.02 @14#! in the SOC model. In the SOC
model,bcrit is measured in the ensemble average of the e
lution for many segments. In other words, the growth o
given local segment does not proceed in a continuous w
and growth jumps among different segments. For any gi
segment, there are many waiting steps between two suc
sive growths, and during the waiting times, growths occu
other segments. Considering the growth process in the
model under the original definition of time, we find the D
model in the neighborhood ofqc is very similar to a local
segment in the SOC model, that is, we can relate the
system atq;qc to a local region embedded in a larger SO
system, while we relate the waiting times in the DP syst
to the growths of SOC system occurring in the regions aw
from the given local region. From all the above pictures,
can heuristically understand the reason thatb1 andb8 in the
DP model are about equal to the value ofbcrit andbtr of the
SOC model, respectively.

To complete the discussion on howq influences the be-
havior of the system, we consider the extreme case,q50.
This is contrary to the opposite extreme case,q51, where
the behavior of the system is trivial because the interf
cannot advance. As mentioned in Ref.@10#, there is no scal-
ing behavior atq50. This conclusion has been confirmed b
our simulations. But to our surprise, we find that the syst
has certain periodic properties. The result is presented in
5. From Fig. 5, we can find that the width of the interfa
W(L,t) varies periodically while it increases~under the con-
dition of Fig. 5, the whole increasing behavior is expone
tial!, and the period is 30L. According to our simulations the
amplitude of the periodic oscillation is a constant except
initial stage. In Fig. 5, there are small fluctuations in vario

FIG. 5. Width vs time withq50, L58192. The periodic behav
ior of width added to the exponentially increasing tendency is
served; the period is 30L.
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55 1529DYNAMICAL EXPONENT OF ROUGH SURFACE WITH . . .
periods, which is due to the fact that the site of growth
chosen randomly. If we average the curve for a large num
of samples, we can obtain a smooth curve with very go
periodicity ~excluding the exponentially increasing te
dency!. To further investigate this phenomenon, we a
simulate the dynamical system for smallq. From the data,
we find that~1! the period is independent ofq and ~2! the
amplitude depends onq, and amplitude decreases whenq
increases. Furthermore, we find the period is also indep
dent of the restricted difference of height between adjo
sites. In fact, this periodic behavior can be regarded as
result of the competition between eventsA andB. Generally
speaking, eventsA roughen the interface while eventsB flat-
ten it. IncreasingA events may increase the probability f
eventsB to appear, and vice versa. This crossing interact
mechanism makesA and B events dominant in turn, an
leads to the appearance of the periodic behavior. Of cou
this is an ambiguous statement. Some problems have
b,

tt.
s
er
d

n-
t
he

n

e,
ot

been well understood, i.e., what factors influence perio
Why do eventsA andB control the width of the interface in
such a periodic way? The mechanism of periodic behavio
still under study.

In summary, we have investigated the dynamical behav
of the DP model in detail. We find the width of the interfac
has the dynamical scaling behavior characterized by the f
of Eq. ~5!. Furthermore, by introducing eventsA andB and
a modified definition of time, we can interpretb1 as an ex-
ponent describing the transient process and the exponenb2
as an asymptotic exponent. The link between dynamical s
ing behaviors of the DP model and the SOC model is brie
discussed. Finally, we find an interesting phenomenon tha
q50 and smallq, the width of the interfaceW(L,t) is a
‘‘periodic’’ oscillation of time added to an exponentially in
creasing behavior, and we heuristically explain the mec
nism underlying this periodicity.
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